

 Navigation

 	
 index

 	
 next |

 	STEM4youth Documentation 1.0.0 documentation

Welcome to STEM4youth Documentation’s documentation!

Contents

Note

You may download source for this documentation [https://bitbucket.org/silf/documentation] here.

If a consortium partner is familiar with GIT/bitbucket and
restructuredtext [http://docutils.sourceforge.net/docs/user/rst/quickref.html]
they are more than welcome to submit Pull Requests to the documentation.

	Terms dictionary

	Use cases

	Content formats

	Functionalities of the repository

	Requirements

	Trial plan in Poland (WUT)

	School IT infrastructure

	OLCMS manual

Questionnaires

	Trial questions

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Terms dictionary

	OLCMS

	stands for Open Learning Content Management System.

	Resource

	Single thing that is submitted to OLCMS, resources can contain multiple files.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Use cases

Educators

Adam — innovative teacher from Poland

Adam is a Physics teacher who teaches at a local high school,
he wants his lessons to be as attractive as possible, and also wants
to encourage as many students to STEM fields as possible.

He uses materials provided by the STEM4youth project, to enhance
his lessons:

	He displays movies as a part of his presentations.

	He uses tests developed in the project, as a part of
homework assignments.

	He performs remote laboratory experiments to show
physical phenomena to students.

What is important for Adam

	He needs stability — if he needs to perform the experiment
during the lesson — this experiment needs to be online.
There is not so many hours in the Physics curriculum in Poland, so every
interruption will be painful.

	He needs to be able to download or embed various materials.
He should be able to present those materials during the lessons, even if
there is no Internet connection in the classroom.

	Adam would like to be able to structure resources in linear
fashion, e.g. after displaying video about photoelectric effect,
he’d like to show students some example test questions, and after
perform experiment on-line. This structuring should be doable
also outside of LMS context.

	During the lessons he needs to be in control what
is displayed right now, students might have problems with some
concepts — which he might need to explain in depth —
rescheduling some contents.

He really doesn’t need an LMS to control order in which
content is given. He absolutely needs to be able to skip
over content — LMS that strictly enforces pre-requisites
is totally unacceptable.

	Sometime Adam needs to make a small adjustment to the materials —
they should be editable.

	Materials for students need to be printable, in Adam’s school
there is only a single classroom with computers, which is
spoken for most of the times.

Problems with this user story

None known

Astero — STEM teacher in Greece

Astero has a four year degree in Physics. She has a good knowledge of Mathematics and some
experience with computing. She doesn’t have much time to prepare for an innovative
lesson neither sufficient freedom to deviate from the curriculum.
Her lessons usually have a linear structure, but she also has to use her improvisation skills since things do not always work as planned.

Astero is using the STEM4youth project material to make her lesson more fancy:

	She wants to have online and offline access to the repository material.

	She wants to be able to select from the available material (video, simulations, worksheets etc.)
in the platform in order to integrate it to her ordinary lesson.

	Her lessons usually have a linear structure, but she also has to use her improvisation skills since
things do not always work as planned.

What is important for Astero

	She teaches in many schools with different equipment, she needs to know:
	Which materials are compatible with the installed OS (Windows XP/7/8/10, Linux)

	How to use the material in the given OS (if some setup is necessary)

	She’d like to have pedagogical guidelines along with the content.

Brian — local activist and STEM enthusiast

Brian is leading a local institution devoted to education
of children (let’s say Kids club in a local Culture Centre).
His lessons are not obligatory — so they need to be
super attractive.

He is focused on developing hands-on activities, and he’d like
to use one of the activities prepared in the STEM4youth
project. His work in the Culture Centre is either
voluntary, or not his main activity — he won’t be able to
spend too much time preparing.

What is important for Brian

	He can easily order everything needed for the hands-on
activities, if something is not available in typical
supermarket/general store he either gets a list of outlets
in Europe, or a internet shop address.

	Parts are cheap.

	He has guidelines for whole hands on activity.

Cecilia — teacher

Cecilia is a maths teacher in an Arts high-school, she
has less hours for Maths than typical schools, moreover here
pupils are less interested than average in the matter.

Typically only interest in Maths is in the final
year of high school, where students start to be concerned
with the final exams, where math is obligatory. However
she still has not enough hours to properly review whole
curriculum. She’d like to have a tool which allows students
to review several parts of the curriculum, independently
on their own pace — she’d like to direct them to a webpage,
and give some pointers on what to learn.

What is important for Cecilia

	She doesn’t want to interact with the platform,
she is extremely busy.

	Whole experience for students should be canned —
no help from her should be neccessary.

Problems with this user story

If we implement this story for a given course:

	Exercises would need to be prepared in a special format (like GIFT)

	Possibly they would be then converted to .pdf for printing (if we want it!).

	LMS needs login functionality for students.

Vangelis — a retiring teacher

Vangelis is an old teacher — he still cares deeply about
his students, so he tries to use whatever best materials
are necessary, however due to his digital exclusion has only limited knowledge of IT.
He doesn’t know what is “Google +” and doesn’t use
“Facebook”.
He follows old fashioned teaching methods, but he likes to introduce some innovative elements in his
lesson. He teaches Mathematics. Vangelis doesn’t speak English.

Vangelis is using content from the STEM4youth project in order to be in touch with new developments
in pedagogical methods and tools. He believes that by integrating content he will make his
lessons more attractive and interesting to his technologically informed students.

	Vangelis is more familiar with printed material.

	Vangelis wants the content to be easily integrated to his old fashioned teaching.

	Vangelis has limited time within each lesson available for innovative content.

What is important for Vangelis

	Login should be unnecessary to download materials from
repository.

	OLCMS should allow downloading the materials in
a easy to use formats.

	Vangelis wants any content to be compatible with Windows because it is the only OS
he is familiarized with.

	Vangelis wants the software content not to need any third party installation or preferably any
installation at all

	Vangelis needs the content to be of a short duration.

	Vangelis wants to be able to browse easily the content at the OLCMS

Zuzanna — innovative teacher from Poland (homework part)

Zuzanna is a Physics teacher who teaches at a local high school.
Her students, although they are interested in subject, don’t seem
to work hard in home on Physics. This is mostly due to
following factors:

	In Poland Physics is not obligatory on final exams (Maths is),
and students are more concerned with obligatory subjects.

	Students have attention span problems — they have only a single
hour of Physics in the week so it’s easy to forget.

	Some student’s are lazy and just copy homework from others
before the lesson

	Zuzanna has no time to check everybody’s homework all the time.

Zuzanna is also a very busy person — she teaches in three schools.
She would like to give more interesting homework, but she has
no time to prepare it — so she usually asks students to do some
problems from the problem book.

What is important for Zuzanna

	She’d like to have an external system in which he would
schedule homework for his students.

	Homework should be graded automatically.

	Each student should see slightly different questions.

Problems with this user story

The same as for Cecilia.

Fabio — search

Fabio is a teacher coming from outside of the project, he has no idea
what STEM4youth is and needs to find what materials are in the repository.

He is a biology teacher teaching in polish school, however in his shool
all classes took part in Italian.

He enters “Biology” in the search box, and we’d like him to:

	Find materials related to the Medicine course.

	Immediately see that materials are in Italian and English.

Grace — teacher that stumbles upon OLCMS

Grace was searching the Internet for materials she might use for her lesson.

We want her to:

	Know what OLCMS is.

	Be able to search OLCMS for contents.

	When she find matierials in OLCMS, she knows how to use them.

All above scenarios should be fulfilled when search engine redirects
Grace to:

	OLCMS landing page

	OLCMS search result page

	OLCMS page for a resource.

HawkBot — search engine bot indexing OLCMS

Hawkbot is a search index bot that indexes OLCMS.

We want HawkBot to be able to properly index OLCMS,
giving this page a high ranking.

Consortium members

Annemarie — IT specialist

Annemarie is an IT specialist, she works with the pedagogy team
to prepare a set of interactive exercises that the student’s use.

She needs to have specs for the content that will allow:

	Seamless integration with OLCMS.

	Allow students to be graded.

Bertram — video specialist

Bertram is a video specialist responsible for recording and subtitling
the video.

Bertram needs to have:

	Defined video format;

	Defined subtitle format;

Cedric — project manager

Cedric is a project manager, he is concerned that we signed keeping project
output on-line for two years after the project finishes. He wants almost all
products to be hosted on OLCMS — this way if we keep OLCMS on-line we will
fulfill our promises.

Derrick — course manager

Derrick is a person uploading course materials to OLCMS. He needs to upload multiple
versions of the matersals in two languages, he wants this process to be as organized
as possible.

He has following requirements:

	Resources should be editable — user with proper permissions should be able to
change resources at will.

	Each resource should have language versions. Derrick wants to have as few resources
as possible — it is easier to upload two changed language versions for a resource,
than a upload two separate resources.

	For each part of the resource we should display change date, and possibly change history.

Students

Alan

He has low technical skills, if he has to access materials in the repository
he shouldn’t have to log in.

Brina

Brina is a high school student that, due to financial constraints
doesn’t own a computer. She however owns a smartphone that come “free”
with her carrier plan.

What is important for Brina

	Most of the materials should be available (in one way or the other)
on low resolution smart-phone screen, using a typical smartphone OS
(e.g. Android).

Problems with this user story

All documents accessible on the smartphone:

	Should be in a format accessible on a smartphone (definetely not MS WORD)

	Should be in a format that adapts to screen size (not .pdf).

	Even if she has PC computer — with MS Windows system, she might not
have MS Word license — so we should rely on formats that have freely
available viewers.

Calvin — student who founds this page using search

This scenario is similar to Grace — user enters OLCMS from
search engine, but this time we want him to:

	Get best/highlighted content/most engaging content and then use it.

Unrelated third parties

Alexis

Alexis is a developer working on a related project, he is trying to discover landscape of
OER repositories and stumbles upon our site.

He should immediately know that this site is based on open-source software and know that
he is welcome to fork and extend it.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Content formats

For now we have more questions than answers.

General notes

Documents need to (also) in editable format. If you upload .pdf please upload whatever
format was used to generate the .pdf.

Where should we put metadata? Either metadata should be a part of OLCMS data model, or
part of uploaded resources.

This is a list of criteria for a content to be “Travelling Well” [http://eqnet.eun.org/web/guest/travel-well-learning-resources]
created as a part of another EC project.

Advice how to prepare each format

Advices how to prepare content (formats and graphical presentation)

Printable documents

TBD

	Experiments recipe (lots of metadata)

Requirements

	Format must be editable, or an editable version must be uploaded along with .pdf.

Video

TBD

Requirements

We definetely should have a single repository for video files, either created in-house or use
some generic solution like YouTube or Vimeo. Following features are considered to be essential:

	Support for subtitles

	Support for multiple subtitle tracks

	Support for multiple audio tracks

	Ad-free experience for our students (which excludes free versions of Youtube and Vimeo)

	Videos should be downloadable — as Internet is not avilable in every classroom by default
(This fuliflls Adam’s),

	Video watermarks (TBD)

Open questions

	Quiz formats

	What codecs will be a problem on WIndoes and what will not.

Requirements for produced videos

	Videos should be split to 5-10min parts

	Videos should be interleaved with quizzes that check understanding
and keep student attention.

Interactive content (games, interactive experiments)

TBD

	Pdfs (interactive?)

We

Remote laboratories

TBD

Questionaires // Quizzes

I would envision these quizzes would be both downloadable and answerable online.

Things TBD

	How to tackle content that is intended to be consumed both on-line and in print (actually most
of the contents...)? On line content should adapt to screen size, which .pdf doesn’t do, on
the other hand .pdf is one of the format that reliably prints itself.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Functionalities of the repository

All of this is still TBD!

Main entity in the system will be a “resource”, which represents a single content item, that comprises
of many files. For example resource might contain:

	Youtube link to a video;

	Downloadable video version;

	Subtitles for the downloadable video in Polish;

	Subtitles for the downloadable video in English;

Requirements

	We might store resources that contain multiple files;

	One of these files will be “default” (in this case youtube link).

	These files will be rendered (youtube links will embed to iframe, pdfs will be
rendered using browser)

	Metadata is extracted from files, but users can add their own (predefined) metadata.

	Files in resources can be overriden and versioned.

	You can filter files in resource using language tags.

	(Stretch goal) There should be an easy way for an user to “fork” materials — user will
get a copy of a resource which he might edit to his needs.

	Multilanguage versions.

	Is integrated with S3 service or analogous. S3 service is a blob store as a service — basically
you upload static files there, and they are served from there. Backups, consistency, availability
and handling transfer spikes is on their side. .

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Requirements

Warning

Not all features written in this document will be implemented, and this document doesn’t
contain any hard commitments.

Note

Missing requirements:

	Everyone may submit their own materials;

	Enable users to up-vote materials;

Basic requirements

	We have a platform where partners (and third-parties) can upload content items.

	These content items may be structured in a linear fashion.

	Content types for these content items are TBD.

	Teachers can download and remix materials

	Students can participate in courses

	Materials are cloneable/remixable by third-parties

OLCMS requirements

	System is stable

	System works reliably, and the urls are stable.

This addresses Adam’s story.

	Content is downloadable

	Content types (for which it makes sense) are downloadable.

Teacher should be able to download materials, for most material types:

	Documents/textual content;

	Quizzes, tests;

	Videos;

This addresses Adam’s story.

	Teacher is in control of content scheduling

	When teacher is presenting the contents in class, he is in control over scheduling
— he might need to skip some parts and/or focus on others.

He absolutely needs to be able to skip
over content — LMS that strifctly enforces pre-requisites
is totally unacceptable.

This addresses Adam’s story.

	LMS part

	System should contain typical LMS part that allows students to
review material on their own. Teacher would point student to LMS and
then student could take course on their own

This addresses Cecilia’s story.

	System contains homeworks that are gradable, teacher can assess student performance

	This addresses Elize’s story.

	Content is browseable and searchable without login

	This addresses Daryl’s, and Alan’s.

	User is able to re-use content in way he is used to

	Content is split in a small parts and user can download it and use it in
whatever way he is comfortable with.

Videos can be downloaded and embedded in presentations, pdfs can be printed,

This addresses Daryl’s story
and Vangelis.

OLCMS is translatable to many languages

We can translate OLCMS to different languages.

We will try to translate it to as many languages as feasible.

This addresses Fabio’s
and Vangelis story.

	OLCMS auto detects user’s language and tries to display content’s in this language

	This addresses Fabio’s
and Vangelis story.

	User is able to switch this language

	This addresses Fabio’s
and Vangelis story.

	OLCMS allows user to browse resources in other languages than his native.

	This addresses Fabio’s story.

	OLCMS role is obvious even for users that found it via the search engine

	User who arrives at OLCMS is able to quickly understand that:

	He browses a repository of teaching materials;

	He can search for more materials;

This addresses Grace’s story.

	User is informed on a Resource page what he might do with the resource

	For example, when browsing Video resource, he should be informed that he might
either show the video (and he gets link to Youtube) or he might download the video
for off-line viewing.

This addresses Grace’s story.

	OLCMS is SEO friendly

	This addresses HawkBot’s story.

	Users should be able to structure materials

	User should be able to structure materials in a linear fashion, to create “lessons” from
individual content pieces.

This addresses Adam’s story.

	Users should be able to edit materials on platform

	If an instructor needs to change given content piece he might do so in a “forking” manner:
that is — he creates a copy of the resource which me might edit.

This addresses Adam’s story.

	Materials should contain metadata

	To a possible extend metadata should be extracted from the uploaded contents. But content
editor should be able to add his own metadata.

Search

	Full text search in material metadata as well as in material contents where possible.

	Tags

	Categorisation with respect to our ontology

	Discipline

	Language

	Pupil age?

	License?

	Content format

Content formats

	Content should be uploaded in editable format

	Content’s should be uploaded in editable formats,
programs that can be used to edit uploaded materials ideally
should be free and open source.

Users should be able to “just” use content’s in a way they
are used to.

This fulfills Adam’s and Vangelis.

User should be able to view materials in free (and, ideally, open-source software)

Contents should be playable on variety of OSes and devices.

This fulfills Brina’s.

	Materials should be playable without installing new software

	This fulfills Brina’s and
and Vangelis.

We should strive to use formats that have pre-installed players :

	We can assume that recent version of Chrome/Firefox browser
is installed everywhere.

	Probably the same for Adobe Reader (for MS Windows systems)

	We can assume users will be able to play videos.

	Printable documents should be uploaded in `.pdf`

	But editable version (if one exists) should be uploaded alongside.

This fulfills Brina’s, Adam’s.

	Formats designed for web should adapt to screen size

	This fulfills Brina’s

Installation instructions are available

For each content format installation instructions are available
for every platform that supports that format.

This addresses Astero story.

Pedagogical instructions are available

For each resource we also give pedagogical instructions.

Course Guidelines

	Use of cheap and available materials

	If Instructor needs to buy some expendable materials for classes he should need
to use cheap and available materials.

Instructions should contain shops (including online shops) where he
might buy the materials.

This addresses Brian’s story.

	Uploaded content should be splitted in small chunks

	Some teachers will have very limited time for innovation,
we should attempt to produce contents that is splitted in
small parts:

	Maximal duration for playing the content should be 15minutes.

	All reusable parts should be separated.

This addresses Vangelis story.

	Materials should be printable

	Content types (for which it makes sense) are printable.

This addresses Adam’s and Vangelis story.

Uploaded materials should have pedagogical guidelines

This addresses Astero story.

Misc requirements

Link to our github/gitlab/bitbucket profile is on the footer of every page.

Open problems

	Printability vs. adaptability

	Ideally materials generated by partners should both look
good when printed, and be adaptable to various screen size.

There is no single format that fulfills both these requirements
(.pdf is good for printing, and .html or .epub are good
at adapting to screen sized).

Converting between these formats is not an easy thing to do.

Technical requirements

	Use storage as a service solution

	I’d rather not have to worry about backing up the resources too much.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Trial plan in Poland (WUT)

Status of this document

This is not a normative document — I just asked our pedagogy team on
how they want to perform the trials, to share with this with the partners.

How will trials in Poland look like

We want teachers to use our materials in their schools.

For Polish teachers/schools using setting up the trails remotely is not feasible,
we need to travel to school (presumably multiple times).

On first visit we prepare a demonstration lesson — that is a lesson that is
conducted by our staff entirely. Then on second visit we may ask teacher to
perform such a lesson themselves and get the evaluation forms filled. Teacher
needs to “see” our tools in action before he starts using them themselves.

Then we invite the school to visit WUT.

Problem points

	Infrastructure is sketchy. We might have very different levels of technical
capabilities for staff in our schools. Usually students are more capable than
teachers though.

One needs to book some time to install everything, and be prepared for surprises,
we tried asking school staff to prepare computers (install some software) but
it was rarely done.

	Visiting the school is totally required. without it most probably they won’t
use the software.

	Teacher training is important, but it doing it remotely is impractical in Poland.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

School IT infrastructure

	Does assumption that every classroom has at least a single computer is valid in every classroom;

	Differs from country to country. In some countries it can be assumed in some other do not.

Mostly we should go with: “If needed teacher will be able to get one laptop for classroom”.

Does this computer have broadband Internet.

Connection should be present.

However materials should be downloadable nevertheless.

Does your schools have classrooms with computers on every student;

There are IT classrooms.

Does assumption that every classroom has a computer for every student;

Not really.

What OS-es school uses. Is this MS Windows or Linux.

Mostly Windows, but there are a lot of Linux in Greece.

Does household of every student contains a PC-Computer

Not really. Often it is the case, but not always.

If they do not own a computer, do they own another computing device: Tablet, Smartphone?

Often they do. We should make everything work on smart-phone.

Does school in your country use any LMS software to deliver contents or tests?

If they use something, they use Moodle.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

OLCMS manual

Step 1: Log in

Go to page: https://olcms.stem4youth.pl/ and click Sign In link. Fill your user and
password.

Note

Right now it is recommended that you use log-in per institution. OLCMS does not store
personally identifiable information, so personal log-ins are unnecessary right now.

[image: ../_images/sign-in-small.png]
Sign in

Step 2: Add some content item

To add new content click Content Item and then Add. Then you need to fill the following:

	type — there is only one content item type: “basic”, we will add “movie”, “quiz”, “course”
at a later date.

	title — title of content item.

	author — authors of your content

Rest of fields are optional, however you might want to take special care to following:

	license — as it will legally mean that your content has following license.

	domains — will be used to enable teacher to filter by e.g. age group.

Click save, and you are done.]

Note

There is a lot of information to fill (and there will be more!), all this was agreed
in Ljubljana, however if you feel this is excessive, let us know and we’ll priorize!

[image: ../_images/start.png]
Add Content Item button (visible for logged-in users)

[image: ../_images/add-content-item.png]
Form for adding content item

[image: ../_images/content-item-view.png]
Created content item.

Step 3: Add some resources

Right now there is no content in your content item. To add things your teacher will be able to
download you can add resources. Click on Add resource button and select appropriate resource
type.

Right now you can attach:

	Files — up to 3GB in size.

	Links

	Documents — that are written in provided editor. These documents can be downloaded as html
files, but we will add branded pdf files as we go.

Attaching files

Click on Add resource button and select appropriate resource type. Fill in file details and
click Submit, then select file to attach and click Submit, wait until dialog closes.

Attaching documents

Click on Add resource button and select appropriate resource type. Fill in file document and
click Submit, then fill in the document. If your document is long you are welcome to use:
“distraction free mode”.

In any case your work is saved locally in your browser, and sent to server when you click safe.

Step 4: Searching for documents

Your document will be searchable after 6 minutes from being saved.

Attaching videos

Right now you can attach single movie to a Content Item of type Video (if you need more please let us know —
if you need more — when we implement Course Feature you’ll be able to use this to have multiple videos).

To attach a video add a resource of type “Video”. Your video will be uploaded automatically to youtube channel,
upload is done in background, so it might take a while, when video is uploaded you’ll see YouTube icon in the resource.

If anything goes wrong with the video, I’ll get an email, which will enable me to re-upload the video and fix any
errors.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 previous |

 	STEM4youth Documentation 1.0.0 documentation

Trial questions

Content types

What kinds of contents you wish to provide (movies, exercises, games, lecture texts,
presentations etc.) to our repository. For each type of content (presentation, exercise etc),
please provide in what format will it be provided, for example:

	For lectures will it be: OpenOffice documents, MS Word files or PDF?

	For movies what format will movie be in: mpg, ogv, or will it be posted to youtube, etc.

	Exercises will it be pen and paper exercise, or will it be a interactive application
that performs grading?

	Some of the contents will need to be translated by third parties eg. to perform trials,
how will you facilitate this.

	Will your content work on non-computer device (tabled, smart phone).

Please treat above questions as an example ones. Feel free to give me as much information
as necessary.

Content consumption by schools

How, do you envision, this content will be consumed by high-schools in your country?
Here are some guiding examples to what I’d like to know:

	Will teachers install some third party software (eg. moodle) to deliver the exercise,
or will it be just plain old pen and paper?

	Will they use movies you provide as part of their presentations?
Will they use your movie when presenting some phenomenon?

	Will your educational games be played in classroom, or in home — will this game grade students?

	How your content will be consumed by students?

	Will individual pieces of content (movies, games, exercises) be assembled to larger pieces:
whole lessons, fragments of curricula or whole curricula? Will these assembly be done by you,
or do you intend to allow teachers to do this easily

Please treat above questions as an example ones. Feel free to give me as much information
as necessary.

How will the trial be performed?

	Do you wish to engage schools in your country?

	Does trial require teacher training? How it will it be performed? Will the training
be performed on-line, or will trainers need to meet with the teachers.

	Will educators/representatives from your institution be present in the schools?

	Does the trial involve shipping physical goods (experiment sets)?

	Do you wish to perform trials in science fairs (science festivals)?

	How will online/interactive content (you produce) be used in trials in schools?

	How will online/interactive content be used in trials outside schools
(e.g. in science fairs)?

Please treat above questions as an example ones. Feel free to give me as much information
as necessary.

Schools in your country

	Does assumption that every classroom has at least a single computer
is valid in every classroom; Does this computer have broadband Internet.

	Does your schools have classrooms with computers on every student;

	Does assumption that every classroom has a computer for every student;

	What OS-es school uses. Is this MS Windows or Linux.

	Does household of every student contains a PC-Computer

	If they do not own a computer, do they own another computing device: Tablet, Smartphone?

	Does school in your country use any LMS software to deliver contents or tests? If so
what software they typically use. For example: in Poland they use Moodle.

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	STEM4youth Documentation 1.0.0 documentation

Index

 Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

 _images/sign-in-small.png
Sign In
If you have not created an account yet, then please sign up first.

Username*

Jozdak

Password*

) Remember Me

Forgot Password? m

_images/cant-store.png
storeSession

Can't store session

< HTTP 406

_images/deployment.png
«Server»

«Docker Engine»

Ngnix 3]

frontend

|

«Service»
Object Storage

g]

Django application

7

«Service»
Youtube

cache 3]

LMs

g]

«Server»
Relational Database

Forum software

_images/add-content-item.png
| R | [= [=1 52

4 Odebrane x (@ olems /wy x B3 [failed]: B x \ © olems /wy % (@ olems /wy x (@ (1)olems/ x (@ olems/wy x (© olems/wv x [[failed]: Bu % (2 Howtoge X) [www x (G config-Sz x (& Settings - X

¢~ C | ® talhost:3000/content._item/edit/70 ar|® %« ®

Create content item

Basic info
Title

My Super Experiment

Provide concise descriptive title for your content. It should be short yet convey what your content is
Authors

Poltiechnika Warszawska x Authors

Provide list of authors. To add a new author write their name and press enter or comma,
Resource license

Creative Commans, Aftribtion alone (BY) v

License on which resource is published. By selecting this license you certify that you have right to release this
content under this licensePlease note that while GUI will enable you to change the license, taking away rights
from users retroactively s not possible in EC legal system(also this is not a Legal advice, seek legal counsel if
you need it).

Tags
Tags

Description

iption

Optional description for your content. No formatting allowed,
Minimal participant group size

Winimal participant group siz

Maximal participant group size

imal participant group siz >

_images/athena-image-service.png
storeSession

< } If cant store sessipl
1| |we wor't download
1] |images !
OK proceed ! !
HTTP 201 |
T
Until sessior) ends)

1
1
T
1
1
| Get new image [
1
1

New image

| New image |

I
T
|
|
|
|
|
|
|
! Buffer image
|
|
I
T
|
|
T
|

_images/start.png
Search Q search
©Adk
Search .
Tags License
Tags Every License v

Next r o

_images/store-experiment.png
Experimert Athena silf-app Storage service
T T T T
i i i i
i ™+ i
| | storeSession i |
I [xmPP server | | |
I was omitted I I I
i i i i
i i i i
} } OK proceed } }
! US—wTmaor t i
For each ne result ! | |
m New results T i I
i i i i
i i i i
Li | i i
T T i i
! || |matchimage ! !
I f - I
i i T L
} } store image } store image }
| If this turns out | | |
I |to betoo slow I ||¢—Imagehande |,
! Well add new e Image handle ! T
| |endpoint tosif-apl| | | L !
| |thatwilldoallthis| | 1 I
i |onsilf-api side 1| |attachimage | I
i i i i
! e _Jto resuits ! !
i i i i
1 || storeresuts JfY |
i i i i
i i i i
i i L i
i i i i
1 T 1 1
- I T T
| series done " i i
! ! seriesdone 7] !
i i i
e i OK i
} } < HTTP 20T +
i i i
i i i
i I i
I i I

_images/arch.png
1
|

We will work on LMS
integration at the
late part of the project

i

LMs,

End user

APl S50
HTTP_ [NGINX Proxy HTTP Django APP Work Queue
S —
Store files
API
S50
Forum Index Service |
Main
datastore.
Retrieve files Youtube API
Read files

SWIFT
Object Storage

_images/stored-experiments.png
Silf API data store Stores experiment results
Retrieves them
Stores images

Athena
Responsibilities
- Stores experiment results
and images
- Filters settings for stored
sessions
- Replays the experiment

Responsibil
- Query API for settings
- Retrieves images

_images/stored-experiment-play.png
Get experment details

:

Experiment disabled

Get possible settings

Settings

untill

all settings are set [, cetting

Values for rest of settings

Set setting

Messages are
through XMPP
groupchat room

N

List of series ids

Athena

Start stored series

This routed by Athena
S0 observers also get
all information

N

selected settings

Get results

—

Mercury tries to keep cache of 10 images,

TISt of images

image-store silf-app Mercury:Prefetcher sfart
T T ; [<tprerdtching
! i
i
get next image | .
[—getnextimage |
get next image i Forleach result)
| [« newresut |
i
i
image i
image | l |
| Get ipag Display !
I results I
|

.
I
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|

B e e e

architecture/4.5.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Integration with forum

We will use off-the shelf forum software, right now most likely candidate will be
Discourse [https://www.discourse.org/], which is a modern forum solution. Discourse was
selected for following reasons:

		It is a modern software written in a modern software stack (Ruby On Rails)

		It is an open-source software.

		It has an extensive API, which allows total control over Discourse.

		It supports Single Sign on with relatively simple API. This API is described here:
https://meta.discourse.org/t/official-single-sign-on-for-discourse/13045 .

We will consider following integrations between OLCMS and the forum:

		Allow single-sign-on, that is when user is logged to the repository he will be automatically
logged into forum as well.

		Use forum as a solution to show comments under various resources uploaded to OLCMS.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

architecture/4.2.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Web-application framework

Main repository component will be written in Python [https://www.python.org/]
programming language, using the Django web-framework.

Python is a high-level, general-purpose, interpreted, dynamically typed programming language.
One of Python aims is to be as friendly to programmer as possible, and strives to enable it’s
users to be as efficient as possible.

Django web-framework is a framework for general purpose web-applications, design of this framework
is focused at:

		Achieving good programmer efficiency through: following DRY principle, using declarative
programming wherever possible,

		Being as secure as possible, and responding to security issues as soon as possible, and
protecting programmer from common errors (like: click-jacking, cross-site request forgery,
sql-injection).

		Containing many useful functionalities out of the box: authentication, administration, templating
engine.

		Scalable — some of the world’s biggest websites are powered by django:
disqis commenting software [https://disqus.com] (currently about among 300 busiest webpages
in the world), instagram social network [https://www.instagram.com/]
(among 20 busiest webpages).

		Useful for creating small websites as well.

Apart from the above upsides we choose Django and Python as our backend technologies, as most of
our team has experience with these technologies.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

search.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

_images/content-item-view.png
CMs

basic

My Super Experiment

Authors: Poltiechnika Warszawska

Domains

Operating system
* Windows

Setting
« Outdoors

Education Level
© 12-15years
© 6-12 years

Content licensed under:

Tags:

architecture/4.4.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Integration with youtube

Videos will be one of important content types produced in this project, in the
requirements gathering phase we have found following requirements:

		Videos need to be playable on a variety of devices, including portable ones.

		Users will have Internet connection of different quality. User should be able to increase
and decrease quality of the video as needed.

		Videos need to be downloadable.

To accommodate these needs we have decided that most interaction of end-users with video
materials will be done through Youtube service (Youtube is a leading video streaming website),
videos uploaded to Youtube are viewable on a variety of devices, and can be streamed in a couple of
quality versions, so by uploading all videos to Youtube we can accommodate requirements 1 and 2.
Moreover youtube has applications for most major smart-phone and tablet brands.

Videos will also be stored inside the OLCMS repository to serve as a backup copy and to facilitate
easy downloads of the video for the end-user.

Uploading video will have following flow:

		Upload the video to OLCMS Repository.

		If avilable upload subtitles.

		OLCMS will upload the video and the subtitles to youtube.

Videos will be uploaded by the OLCMS (and not by the end-user) as it is important that version
uploaded to youtube be the same as the one that is downloadable from the OLCMS repository.

To upload the videos we will use Youtube API. Youtube API has a python client library that is
supported and developed by the company that operates Youtube.

Youtube API uses quota system that allows up to 400 video uploads daily (these limits can be
extended), these limits should suffice for the OLCMS use by the consortium partners.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

architecture/4.7.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Integration with LMS

Exporting materials from OMCLS to LMS

Before selecting LMS we will integrate with we consulted with partners. It turns out that
if schools use their own local LMS instance, this instance will most probably be Moodle (most
probably it is due to relative ease of installing PHP based applications by people with low
technical skills — or for historical reasons as Moodle is one of the LMS software with
longest history we checked).

By design most of the materials prepared in the project should be compatible with moodle. That is
end-user will be able to export materials from the OLCMS repository, and then import them to moodle.

Full-blown LMS integration

If we decide to provide LMS instance hosted in Stem4youth infrastructure we will most probably
choose Moodle, as some interoperability will be already present (due to OLCMS having export formats
compatible with Moodle). In terms of integration we’ll choose LMS based on following requirements
(accessible via a REST or a webservice API):

		Single Sign On — user is atomically signed-to LMS when he is signed in to OLCMS.

		Creation of Student accounts

		Creation of content (courses)

Since Moodle Webservice API doesnt does not all these requirements we will either have to implement
them as plugins or choose another LMS.

Summing up our understanding of Moodle REST API:

		Classes (cohorts) can be created

		Courses can be created, but there is no way to add contents to course via the API.

		Single sign-on would either require a plugin or OLCMS would need to support
SAML authentication (there is a moodle SAML consumer plugin provided by a third-party).
SAML (Security Assertion Markup Language) is a standardised protocol based on XML
allowing for sharing of cryptographically signed authentication and authorisation
statements.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

specs/0030-spec-for-olcms-repository-variant.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Specification and architecture for OLCMS

Note

When something is labelled as “Not in MVP” it means that it won’t be avilable in Minimum Viable
Product — i.e. not available in first version of the software.

Table of Contents

		Specification and architecture for OLCMS
		Open problems

		Data model
		Introduction

		Content item

		Resource

		Domains

		License

		Resource role

		Another entities

		Basic principles

		List of features
		Basic Resource Types

		Simple Content Item

		Video Content Item

		LTI Content item

		Quiz Content Item

		Simulation Content Item

		Sequence Content Item

		Resource management features
		Content Item versioning

		Content Item forking

		Content Item merging

		Content lifecycle management

		Translations

		Content rating

		Cross cutting features
		Search

		User management

		Proposed version list
		Preparatory tasks

		Bare bones system

		Minimal version

		Baseline version

		Un-prioritized features

		Stories definition
		Preparatory tasks
		Investigate content formats and select content formats we’d need to export to

		Write technical requirements

		Do proper architecture discovery

		Figure out language versions

		Project set up

		Bare bones version
		Create models for login and partners

		Create utility to store files

		Create Basic resources

		Create Basic Content Item

		Create a Content Item List

		Prepare platform translations

		Decide what licensing model to use

		Decide what domains should we define

		Set up youtube account

		Initial version
		Create Video Content Item v1

		Create a Quiz Content Item v1

		Add full-text search to Content Items

		Create spec for simulation content item

		Implement simulation Content Item

		Baseline version
		Add ability to upload subtitles to Videos

		Quiz v2

		Add student/teacher roles

		Create a simulation content item

		Full text search

Open problems

		Metadata translation

		Metadata should be translated, there are multiple ways to do it:

		use some canned solution like: django-modeltranslate [http://django-modeltranslation.readthedocs.io/en/latest/registration.html]

		create some tree like structure where for each Content Item many rows with metadata in
different languages will be provided.

This is addressed by creating a discovery task to specify this part of the system.

		What licensing model to use?

		Only Creative Commons licences or allow custom licenses?

For now we’ll use CC, then we’ll ask the partners about their
opinion.

		What domains we will use?

		Domains are specific identifiers e.g. age group, discipline that categorize Content Items.

For now we’ll use age groups (resembling Polish school) and discipline.

Data model

Introduction

Content in OLCMS repository is organized into separate pieces called Content Items which
represent logical resources available for teachers for course construction. Content Items
are reusable across courses. Content Item does not store data itself, it acts as a container for
metadata and series of Resources.

Content item

Content item is a logical resource usable for teachers. It
contains mainly metadata, actual data is stored in Resource.

Content items contains:

		Name: name of the resource

		Description: description of the resource

		Authors: reference to Author

		Owner: person who can change the resource, reference to users, or their organisation.

		Type: reference to material Type - material type would be e.g. video, document.

		Domain: this are domain specific identifiers e.g. age group, discipline.

		Tags: miscellaneous tags, provided by users

		Resources: Resource‘s attached to this entity.

		Image: cover image for the resource

		License: license on witch metadata is published. It also serves as default license for resources - Resource has its own license field which is optional, if not specified Resource inherits Content Item license

Resource

Resource stores data. It can be linked to a Content Item.

Resource Contains:

		Type: type of the resource, available resource types are dependent on
the type of Content Item.

		Resource Role: role of the Resource, e.g. it is a manual, pedagogical help on how to use
the material, supplementary material.

		Type Specifier: additionally specifies type of the resource (this feature will be added at later project stage).

		Language: language of this resource.

		Description: optional textual description.

		Content: resource content, data.

		License: optional, by default Resource inherits Content Item license

Note the difference between Type fields in Content Item and Resource - type of Resource specifies
physical type of data, e.g. link, video file, text file etc. Type of Content Item specifies logical resource type,
e.g. document, video, etc.

For example Video content item could provide link to video on youtube, downloadable video file and
subtitles in few languages. It would contain resources with following types:

		Video Link: link to youtube page of the video.

		Video File: video file for download of online viewing.

		Audio Track: audio track for video file (one resource of this type for each supported language).

		Subtitle File: text file with subtitles for video file (one resource of this type for each supported language).

There is also Resource Role field available in Resource which is similar to the Type field,
but it specifies role or use-case of the resource, for example pedagogical help, manual, test material, etc.

Domains

List and types of domains will be determined after consultation with partners.

For now we’ll have following domains:

		Subject

		Age group (roughly using polish school system): 6-10; 10-14; 14-18; 18+

License

For now we’ll start with Creative Commons (CC) license as default for content.

Resource role

Resource role allows users to define what the resource is in a logical manner.

Example resource role:

		pedagogical guide

		test material

		accompanying material.

Another entities

		Tags

		Generic tags, provided by users.

		Owner

		A reference to user or his organisation.

		Content Item Type

		Type of content is set during Content Item creation, and defines most functionaries and
behaviours of Content Item, as well as available Resource Types.

		Resource Type

		Type of resource.

Basic principles

Content Item supports following operations:

		Create: anyone can create content item; what information is needed to be set depends entirely on
Content Type.

		Edit: only person that created content item can edit it (some other security scheme may be thought of)

		Publish: each resource will have a draft version and published version. Draft will replace
published version when user performs a publish action.

		View: when resource is viewed it’s rendering depends on Content Item Type.

		Fork: (not in MVP) sometimes an user needs to create resource similar to given resource,
but with some changes — to facilitate this he can Fork the resource — creating a copy
of given resource that he might edit.

List of features

Basic Resource Types

For every Content Item user will be able to attach following resources:

		File resources of various roles (for example pedagogical guide)

Each file has a description and a content type.
Content type (e.g. msword document, or excel spreadsheet)
should be guessed from file content (when uploading), or can be set
explicitly — and is used to display information on how to use this file (e.g. what programs need
to be installed).

		HTML resources (essentially the same as file resources, but created using a builtin WYSWIG editor).

		Link resource.

Simple Content Item

A Content Item that can contain:

		File resources

		HTML resources

		Link resources

It is rendered as a grid of possible downloads, with one item that is “Highlighted” or “Main”.

Note

It might be rendered differently in the view produced by Sequence Content Item, e.g.
when it is rendered as a part of Sequence Content Item it only displays “Main” resource (and optionally
a small list of links to rest of the resources at the bottom).

Video Content Item

A Content Item that is rendered as a single video. It should have set following resources:

		Video Link resource: it contains a link to youtube — we will by default embed this video when rendering.

		Video File resource: it contains a file that can be downloaded.

		Video Subtitles

		Video Audio tracks

After user uploads the video to our servers we will upload the video to youtube to our channel
(this is the only way we can guarantee that uploaded version and youtube one are in sync).

LTI Content item

A Content Item that accesses external resource using LTI (or similar protocol).
Essentially this is a remote service that allows user to perform some task
and then grades him.

Quiz Content Item

A Content Item that contains:

		Single choice questions

		Multi choice questions

		Open questions.

When user views this Content Item he might fill this questionnaire and he’ll get a score.
This score is saved in the profile if he is logged in.

Quiz can be downloaded in pdf/docx/odt format for pen and paper tests.

Quizzes can be downloaded and imported to Moodle (and other CMS’s)

Note

Exact format of Quizzes is to be discussed. Most possibly we will use some off-the shelf software (if
there is one sufficiently good)

Simulation Content Item

Simulation Content Item contains a Simulation Resource, that will enable us to display
an interactive in-browser simulation.

Note

Format must be specified, e.g. a .zip file containing a html file and resources.

Sequence Content Item

Sequence Content Item contains a list of links to other Content Items, that are displayed in
sequence. It could serve the role of very simple course.

For example to create a movie that lasts 30 minutes and has quiz in the middle and at the end of the film one
would create sequence containing :

		First part of the movie (Video Content Item)

		Quiz (Quiz Content Item)

		Second part of the movie (Video Content Item)

		Second Quiz (Quiz Content Item)

Note

This is similar to what SCORM does (linear sequencing).

Content items might be rendered differently by sequence content item.

Resource management features

Content Item versioning

Content items should be versioned: each change should transparently
create new version of the Content Item. One should be able to revert to previous version.

Content Item forking

When user (named Alice) wants to change resource created by another user (Bob)
she should be able to “Fork it”. Forked resource a copy of the original resource
but Alice has rights to edit the copy. Forked resources are linked to original
resources (that is: Carol who visits the OLCMS and sees Alice’s copy can
also see the link to Bob’s copy).

Note when Alice forks content from Bob, author’s list should be unchanged. It should be altered
to include Alice when Alice edits the content.

Note

There are many issues with Forking, it interacts in surprising ways with rest of the system:

		How does Quiz answers behave when forking?

		How does Ratings behave when forking?

Content Item merging

Alice forked Bobs Content Item, she can ask Bob to merge changes — that is to update Bob’s copy
with Alice’s version.

Content lifecycle management

Add explicit publish step to content creation/edit.

Changes to content would be visible only after user clicks publish.

Note

This would fit very well with content versioning. Maybe it would be worth to implement
these two at the same time.

Translations

Translations are an open problem right now.

Content rating

Ability to add rating to content, and comment it.

It must be figured out how rating and comments should interact with content forking.

Cross cutting features

Search

Objects that are searched are Content Items, that is: content items are results of the search.

User should be able to refine his search using:

		Type of content item (e.g. search only for simulations)

		Domain of content item (e.g. search for Physics content for high school)

		Language

		Contents of metadata (both for Content Item and resources)

		Full text search for resource contents.

User management

Users should be able to login by username and password, also using some selected Oauth2
providers (Google+, Facebook).

Login should be optional for read-only access to the page.

After login users should be able to provide profile where they signify whether they are a:

		teacher

		student

		adminstrator (Consortium Member role).

Students will not have (by default) most of the edit functionality of the page.
They may be (not in MVP) added to classes where they might be graded.

Proposed version list

Preparatory tasks

		Investigate content formats and select content formats we’d need to export to

		Write technical requirements

		Figure out language versions

		Do proper architecture discovery

		Project set up

Bare bones system

Timeline: At 31st of January 2017 we should
release first version of OLCMS that implements all of these features, as well
some features from: “Minimal version”.

		User can see list of content items and search them by metadata.
Search is described here.
Content item is described here Content item.

		User is able to view each individual content item.

		User is able to log in (user management).

		Logged in user is able to upload a Basic Content Item
with basic resource. Basic Content Item
contains: files, html pages and links.

		UI is bilingual polish/english.

		Content Items are in a single language.

Minimal version

Note

This should be finished by 31st of May 2017.

		User can upload, edit and see Video Content Item in minimalistic version.
(just video, no subtitles; subtitles will be added in next version)

		User can upload, edit and see Quiz Content item in minimalistic version
(ability to define quiz, and take quiz interactively). See Quiz v1

		Multilingual content items

		Ability to rate and comment content items.

		User can create sequences of content items.

		User is able to perform a full-text search on content (our ultimate goal is to
have everything searchable — including video subtitles, simulation text and so forth.
At this point in time though not all content types are implemented: so obviously they
will not be searchable. However Full-Text will be implemented for these content types
as they are developed)

Baseline version

Note

Target date September 2017

		Full blown Video Content item;
user can add subtitles.

		Quiz v2; user can download quiz in various formats

		Create a simulation content item

Un-prioritized features

These features are not prioritized and have no task assigned to them

		Add student/teacher roles to the OLCMS and display different content kinds for both of them.

		Decide whether add typical LMS features (classes, grading); or integrate with a off-the-shelf LMS.

		Quiz v3 (integration with full-blown LMS)

		Create multilevel content — containing section, subsection and paragraph.

		Export content items to LMS (like Moodle). Export multilevel content, export Quizzes.

		Content forking.

		Content merging

		Content versioning

		Add lifecycle management to content items

		LTI content item

Stories definition

In this section work is slitted to manageable stories — each of them is doable
by a single developer in manageable amount of time.

Preparatory tasks

Investigate content formats and select content formats we’d need to export to

Read about standardized content formats used by many LMSes and decide
which one should we use.

Outline any possible changes to data model we’d need make to facilitate
this format.

We needs formats for two things:

		Quizzes

		Sequence Content Item (Sequences can contain quizzes)

Write technical requirements

Write out any sensible technical requirements, for me it’s:

		OLCMS has a REST API, that allows everything GUI allows.

		OLCMS GUI uses this api.

		Close to 100% test coverage

		Linter and pep8 enforced

Do proper architecture discovery

		Install Jackrabbit repository and check if it is better than other solutions (ie. storing
things directly in Swift)

		Figure out language versions / Do some prototyping with translations

		Decide final database layout

		Do some prototyping/reading about full-text search
(

please check at least:
postgres full text search [https://www.postgresql.org/docs/9.5/static/textsearch.html],
django postgres full text [https://docs.djangoproject.com/en/1.10/ref/contrib/postgres/search/],
elasticsearch/lucene [https://en.wikipedia.org/wiki/Elasticsearch]

).

Please seriously consider using postgres — it’s one less service to maintain!

		Select technology (Django)

		Decide if we want to integrate with some off-the-shelf lms

		Select python version and Django version
(off-the-shelf lms may only support specific Django/Python versions).

		Decide whether we do Single Page APP or no.

Figure out language versions

Figure out how to handle translations for Content Item and Resource.

Metadata should be translated, there are multiple ways to do it:

		Use some canned solution like: django-modeltranslate [http://django-modeltranslation.readthedocs.io/en/latest/registration.html]

		Create some tree like structure where for each Content Item many rows with metadata in
different languages will be provided.

Project set up

		Create a repository

		Set up project skeleton

		Set up CI

		Set up linter

		Create some base template

Bare bones version

Create models for login and partners

		Set up login and user registration

		Create model for partner organisation.

		Create GUI for adding partners

Create utility to store files

Think of nice way to store files, requirements would be:

		Files are immutable — after they are created they should not change.

		Copies to files are shallow — that is if someone uploads a 1GB movie to our
servers and someone else copies the resource we’d rather not have two copies
of this file.

Maybe store files using sha256 reference — however computing them for large files
could be not very easy.

Create following features:

		Create models to store files.

		Create API to store files.

Create Basic resources

Create views that allow:

		Adding basic resource

		Viewing basic resource

For following resources:

		File Resource

		HTML Page Resource

		Link Resource

Note

If this turns out too big just split off part of work.

Create Basic Content Item

Create Basic Content item — a collection of basic resources.

Make as much of the work re-usable for Video Content Item and so forth.

At the end of this task user should be able to create,
view and edit the content item.

This is too big for a single story, proposed split:

		Create models to facilitate Content Item and form to add and edit it.

		Create a view that renders the content item

Create a Content Item List

Create a page that lists all Content Items, this page is paginated.

Add basic search to that page.

Prepare platform translations

		Inform the partners that we will be doing the platform in Polish and English, ask them if they
would like to participate in translation efforts.

		If they do select proper translation tool, like: https://www.transifex.com (expensive),
https://www.oneskyapp.com/, http://zanata.org/

		Prepare polish translations in the tool and encourage partners to contribute.

Decide what licensing model to use

		Draft a proposal and ask partners for input

Decide what domains should we define

		Draft a proposal and ask partners for input

Set up youtube account

Create Youtube account with API access for the project.

Coordinate with partners about branding/logo etc.

Initial version

Create Video Content Item v1

Create a video resource.

		User should need to upload the video (maybe(?) video upload should need
special privilege).

		Our system would upload the video to youtube.

Create a Quiz Content Item v1

Create a Quiz Content item. Acceptance Criteria:

		User may add Quizzes that contain Multi Choice Questions, and Single Choice Questions,
and (ungraded) Text Fields.

		Users who take the quiz get grade a percentage grade displayed.

		Responses and grades are recorded somewhere.

This is too big for a single story, proposed split:

		Create models for the resource resource and UI to add questions.

		Create a view that displays the quiz

		Create UI to take the quiz.

Add full-text search to Content Items

Full text search should extract contents from files.

Create spec for simulation content item

Create a spec for simulation content item
and then give it to partners for approval.

Implement simulation Content Item

Implement simulation Content Item

Baseline version

Add ability to upload subtitles to Videos

		There should be some validation done (e.g. check if subtitle track is not longer than the video;
format checks for subtitle file).

		Subtitles should be synced to youtube.

Quiz v2

		Allow the owner of Content Item to see quiz responses.

		Allow quiz download to odt/docx/pdf whatnot.

Add student/teacher roles

Add student/teacher roles to the OLCMS and display different content kinds for both of them.

Create a simulation content item

This contains multiple tasks:

		Create a spec for simulation content item

		Have it approved by partners

		Implement it.

Full text search

This contains multiple tasks:

		Check out results of the initial discovery about full text search.

		Create full text search indexes.

		Add search support.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

architecture/4.1.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Big picture view

Repository will use quite a lot independent services, most of them not writen by
the Stem4youth team.

Diagram of the deployment can be seen below:

[image: ../_images/arch.png]
Deployment diagram for Stem4youth repository.

To make this deployment both easy to deploy and to scale we will extensively use docker-engine
to deploy whole system.

Docker is a tool that allows:

		Creation of images containing a program and all of it’s dependencies
(including system libraries), these images can then
be run on any compatible Linux system. Each of these images
contains a single service.

		Images are stateless — that is they can be taken down and restarted easily — persistent
data should be stored in a dedicated services (Databases, Object Storage)

		Private networking between running services.

		Services are versioned, and can be rolled back to previous versions.

Repository will use following data-stores:

		Main database containing mostly resource metadata. This will be an SQL database.

		Uploaded resources will be stored in dedicated file storage.

Repository will interact with following services:

		Index service — a service that performs full-text indexing, and full text search.

		Forum — a forum that will facilitate communication between users.

		LMS — at a late stage of the project we will attempt to integrate LMS with the repository.

We will use industry-leading off the shelf software for these services. Most likely candidates
for these services are explained in the next chapters.

[image: ../_images/deployment.png]
Deployment diagram.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

architecture/4.3.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Data storage backends

One of the design goals of the repository is to be stateless — that is all user-generated
data and content is stored in services that are not maintained by the Stem4youth team, this
decision allows us to save time and be cost-effective.

Relational database

Repository will be backed by PostgreSQL database, it is one of the industry leading open-source
databases:

		PostgreSQL is one of the most SQL-compliant open-source databases.

		It is extensible, stored procedures can be written in a variety of languages.

		Strong emphasis on following ACID (Atomicity, Consistency, Integrity, Durability) principles.

		Emphasis on security.

PostgreSQL is natively supported by Django framework.

Object storage

Object storage system is a non-trivial system, among others,
following concerns need to be addressed:

		Redundancy: files need to be stored in a multiple devices, should any one of them fail
files need to be relocated.

		Scalability: storage service should be able to handle spikes of traffic.

Most cloud providers provide their own storage service, for example:

		Amazon S3

		Google Cloud Storage

		OpenStack SWIFT

Most of these services has a Django compatibility layer.
We will use a OpenStack based cloud, with SWIFT storage service, SWIFT is compatible with Django
framework.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

specs/0050-dicsourcse-discovery.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Discourse installation

Changes to ours servers:

		Add swap to our system (find ansible role)

		Bump disk size

Installation goals

It would be great if we could just deploy discourse as one more image in our code, at the last resort we could
just use dedicated VM but costs.

Install discourse

There are three ways to install discourse on our servers, all of them are fucking weird.

		Use official version that uses docker, but not docker-compose, and some really weird yaml templates that
are not ansible but some really weird ruby stuff.

Discourse devs are rather sure that they want these weird things:

		https://meta.discourse.org/t/can-discourse-ship-frequent-docker-images-that-do-not-need-to-be-bootstrapped/33205/67

		Use some unsupported docker-compose repositories in github, like this one [https://github.com/indiehosters/discourse]
these are cool, but I’m not entirely sure they will be as fast and as secure as official one.

For starters nginx conf in official image [https://github.com/discourse/discourse/blob/master/config/nginx.sample.conf] has some security checks missing
from one in in docker-compose image [https://github.com/indiehosters/discourse/blob/master/nginx.conf].

		There is an ansible script to deploy discourse [https://github.com/SamSaffron/discourse-ansible/blob/master/roles/discourse/tasks/main.yml]

We dont want to use ansible, but maybe we could re-write ansible scripts as docker files for Nginx and Discourse
roles.

Why official docker is the only way

`Accodrding to this discussion
<https://meta.discourse.org/t/ansible-discourse-install-discourse-with-ansible-without-docker/31215/9`__ docker image
use some crazy shit ruby patches, and speedups, quoting:

The Ruby 2.2 image we have (which is enabled on meta) is a custom build of Ruby with method cache patches.
Unfortunately, even patched we are struggling to meet the same memory and cpu perf we get on 2.0,
hence it is not yet default.

Which basically means that we are stuck to this fucking docker setup I don’t understand a shit.

Decision

We should try to generate normal images containing discourse code. By:

		FROM discourse:version.

		Either manually applying the “yaml templates” during build phase, or just apply them using this pups thing but duting
build.

		Or just use this bootstrap thing and then https://docs.docker.com/engine/reference/commandline/commit/.

Possible alternative: use another forum backend, like this: https://flaskbb.org/

Customising discourse

General things

How to update settings without using UI (probably database).

Rest API Client:

		https://meta.discourse.org/t/discourse-api-documentation/22706

		https://meta.discourse.org/t/using-the-rest-api-with-other-languages/21699

SSO

Single sign on: https://meta.discourse.org/t/official-single-sign-on-for-discourse/13045

How to automatically create topics

Via REST API, or create them automatically by embedding javascript.

How to embed threads inside our content items

		https://meta.discourse.org/t/using-the-rest-api-with-other-languages/21699

		https://meta.discourse.org/t/embedding-discourse-comments-via-javascript/31963

Things that are nice but not required

		https://meta.discourse.org/t/set-up-reply-via-email-support/14003

List of tasks

List of jira tasks in this epic:

		Increase disk sizes on ours systems

		Update ansible scripts to have swap file

3. Dockerize discourse (partially done)
3. Find a way to update discourse settings (SSO, admin users, etc.) automatically: without clicking to gui.
4. Implement SSO
5. Add snippet that automatically creates discussions for a given content item

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

specs/0020-translations-for-remote-lab.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Translating (i18n) Remote lab Discovery

Concerns for all solutions

		Generally user should specify more than one language (s)he speaks, maybe
accept the same syntax as Accept-Language header [https://pl.wikipedia.org/w/index.php?title=Lista_nag%C5%82%C3%B3wk%C3%B3w_HTTP&oldid=46310106#Accept-Language]?

Translation (i18n) for Remote Lab

Possible solutions

		1. Make Experiment do all the work

		In this solution operator will send to the server what language(s) (s)he. Server then
tries to accommodate to the language choice.

Pros

		Least effort to implement

		Very little changes to architecture

Cons

		In an experiment session language is chosen by the operator, and rest of the users
end with a unintelligible interface. OTOH accommodating multi-language experiment sessions
would be hard.

		2. Make experiment publish translatable strings and translation resources

		In this solution experiment publishes translatable strings, instead:

"label": "Impulse count for 10 sec measurement"

It publishes:

"label": {
 msg: "Impulse count for {time} sec measurement"
 ctx: {
 time: 10
 }

And publishes translation that translate “Impulse count for {time} sec measurement”
to various languages.

These translations can be delivered to clients in two ways:

		Either from silf-app, where they are uploaded by operators when Experiments
are changed.

		From the experiments themselves.

		3. Make experiment publish every language

		In this solution Experiment publishes translation strings for all languages it supports,
for example instead of

"label": "Czas pomiaru dla jednej grubo\u015bci materia\u0142u"

It sends:

"label": {
 "pl": "Czas pomiaru dla jednej grubo\u015bci materia\u0142u",
 "en": ...
 "de": ...
}

Cons

		Not really a good solution.

		Complicates SILF in unexpected ways — for example when storing experiment results.

Verdict

Option 1. is by far easiest. We will go with it.

Proposed tasks

Prepare draft of protocol changes required

		Prepare draft of protocol changes

		Have it approved

Prepare a an extraction tool that extracts strings from Experiment

There is a lot of OSS tools that do this, choose one of them and:

		Document how it should be used.

		(Maybe) prepare some wrapper scripts (push them to commons repository).

		Extract strings from one of the experiments, and prepare them
for translation (translate this to english along the way).

Prepare translations (for each of experiments)

The same as above but for the each new experiment.

Add support for this feature to commons

Implement protocol in commons and add it to one of the experiments.

Add support for this feature in Mercury

Implement protocol in Mercury.

Translation for Chatbot

Is totally not obvious. Will be done at a later date.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

specs/0040-spec-for-file-upload.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

File upload spec

Option 1: Use plain swift

In this option we’ll just use: https://github.com/blacktorn/django-storage-swift.

Pros

		Least work

		No code on our end (this doesn’t mean no work).

Cons

		What if user uploads 3GB file, and interrupts this upload 10 times? We’d have 20GB of
stale storage.

		Extra deployment complexity to handle big file uploads ... Handling uploads around 4GB
is not very easy.

Complexity to handle big uploads

Let’s say end-user uploads 10GB file to our system:

		Upload is first handled by nginx, which stores it to temporary file.

		When upload is done all request is forwarded to uwsgi, there django will store this file in
a temp file once again.

		After the file is received it is sent from Django to external service.

To sum it up: file is copied three times creating two temp-files.

Note

By default nginx doesn’t handle uploads that big, some settings tweaking will be needed.

Manuals to upload large files are here:

		For owncloud, but nginx config should be the same:
https://github.com/owncloud/documentation/wiki/Uploading-files-up-to-16GB

		Outdated, but mentioned in a couple of places:
https://coderwall.com/p/swgfvw/nginx-direct-file-upload-without-passing-them-through-backend

Option 2: Use swift with direct uploads

In this solution files are uploaded directly from client to SWIFT.

Pros

		Fastest

		Theoretically no file size limit (practically 5GB, see Cons)

Cons

		Swift has hard limit on single upload (5GB) this is not limit on file size, but a limit on single
chunk size, it an be worked around by uploading files in chunks, which would be a pain to do

See this: http://docs.openstack.org/developer/swift/overview_large_objects.html

Implementation notes

Configure CORS middleware

CORS is a tool that allows JavaScript code to do requests to other domains. So for our JavaScript
to be able to access (or edit) resources swift must send proper CORS headers.

This is controlled by CORS middleware, which is enabled on OctaWave.

To configure CORS you’ll need to issue following command:

swift post <container-name> \
 -H 'X-Container-Meta-Access-Control-Allow-Origin:*' \
 -H 'X-Container-Meta-Access-Control-Expose-Headers:*' \
 -H 'X-Container-Meta-Access-Control-Allow-Headers: *' \
 -A -U ... -K ...

To check if CORS is configured on container upload something to that container and
use this page for tests

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Test CORS</title>
 </head>
 <body>

 Token
<input id="token" type="text" size="64">

 Method

 <select id="method">
 <option value="GET">GET</option>
 <option value="HEAD">HEAD</option>
 <option value="POST">POST</option>
 <option value="DELETE">DELETE</option>
 <option value="PUT">PUT</option>
 </select>

 URL (Container or Object)
<input id="url" size="64" type="text">

 <input id="submit" type="button" value="Submit" onclick="submit(); return false;">

 <pre id="response_headers"></pre>
 <p>
 <hr>
 <pre id="response_body"></pre>

 <script type="text/javascript">
 function submit() {
 var token = document.getElementById('token').value;
 var method = document.getElementById('method').value;
 var url = document.getElementById('url').value;

 document.getElementById('response_headers').textContent = null;
 document.getElementById('response_body').textContent = null;

 var request = new XMLHttpRequest();

 request.onreadystatechange = function (oEvent) {
 if (request.readyState == 4) {
 responseHeaders = 'Status: ' + request.status;
 responseHeaders = responseHeaders + '\nStatus Text: ' + request.statusText;
 responseHeaders = responseHeaders + '\n\n' + request.getAllResponseHeaders();
 document.getElementById('response_headers').textContent = responseHeaders;
 document.getElementById('response_body').textContent = request.responseText;
 }
 }

 request.open(method, url);
 if (token != '') {
 // custom headers always trigger a pre-flight request
 request.setRequestHeader('X-Auth-Token', token);
 }
 request.send(null);
 }
 </script>

 </body>
</html>

Use Swift Form

		Set a crypthgraphic key for your infrastructure (see “Temp Url” section)

		Prepare form with cryptographic signature:
http://docs.openstack.org/developer/swift/api/form_post_middleware.html

		Signature can be generated by this script. Key is set account-wide(??)

import hmac
from hashlib import sha1
from time import time
path = '/v1/AUTH_385fff76-290b-43da-b2fc-96b1c08bce24/xxxxx/foo'
redirect = 'https://ocs-pl.oktawave.com'
max_file_size = int(4.5 * 1024 * 1024 * 1024)
max_file_count = 10
expires = int(time() + 600)
key = '...'
hmac_body = '%s\n%s\n%s\n%s\n%s' % (path, redirect,
max_file_size, max_file_count, expires)
signature = hmac.new(key, hmac_body, sha1).hexdigest()
print(max_file_size, max_file_count, expires, signature)

		Enter information printed by this form to following HTML form:

<html>
<body>
 <form action="..."
 method="POST"
 enctype="multipart/form-data">
 <input type="hidden" name="redirect" value="https://ocs-pl.oktawave.com"/>
 <input type="hidden" name="max_file_size" value="4831838208"/>
 <input type="hidden" name="max_file_count" value="10"/>
 <input type="hidden" name="expires" value="1476875941"/>
 <input type="hidden" name="signature" value="..."/>
 <input type="file" name="FILE_NAME"/>

 <input type="submit"/>
 </form>
</body>
</html>

		This has been tested. Probably this should work also for Javascript.

Use Temp Urls

		Cryptographic keys are stored on either account or container level,
To set one execute following command:

swift post <container-name> -H "X-Container-Meta-Temp-URL-Key:MYKEY"

		Generate temp url for each upload, this can e done from fallowing code:

import hmac
from hashlib import sha1
from time import time
method = 'GET'
duration_in_seconds = 60*60*24
expires = int(time() + duration_in_seconds)
path = '/v1/AUTH_385fff76-290b-43da-b2fc-96b1c08bce24/xxxxx/debian.iso'
key = 'b3968d0207b54ece87cccc06515a89d4'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()
s = 'https://{host}{path}?temp_url_sig={sig}&temp_url_expires={expires}'
url = s.format(host='ocs-pl.oktawave.com', path=path, sig=sig, expires=expires)
print url

		Issue PUT from javascript (tested with curl and works)

Check cors and tempurl from curl

		Set up cors on container

		Create tempurl for PUT for new (notexistent file)

		Issue following command:

curl -i -X OPTIONS -H 'Origin: http://localhost' \
-H "Access-Control-Request-Method: PUT"
temp url

		You should get following response:

HTTP/1.1 200 OK
access-control-allow-origin: *
access-control-allow-methods: HEAD, GET, PUT, POST, COPY, OPTIONS, DELETE

Option 3: Direct upload to Swift with chunks

The same as 2 but have additional support for large chunks:
http://docs.openstack.org/developer/swift/overview_large_objects.html.

This would require some javascript work, but 5GB should be enough.

Option 4: Do some nifty hash magic

Do some nifty things with hashes — this would require downloading big files to our servers.

Notes

		Someone created a simple django app for that, it’s old and outdated;
https://github.com/mmcardle/django_swift_direct

Common tasks

Tasks that should be dane ir-regardles what solution we’ll use:

		Add mount /tmp on tmpfs on containers: https://docs.docker.com/compose/compose-file/#/tmpfs

		Do some tool that deletes unreferenced files

Selected solution

We will go with Option number 2, that is direct uploads from JavaScript, with hard 5 GB limit
(that is one of Swift constraint)

		Normal DjangoStorage API’s should work, that is we should configure django-storages-swift.

		There should be an user-visible API endpoint (both in Python and in WWW API) that would
take: a Resource id, and a file name. It will return a temp url which user can
directly upload to.

This endpoint should ensure that:

		User will not override other user’s file.

		File will be downloaded with the same name user has specified, for example upload files
to following url: fun-with-maths/c00ffe/instruction.guide.pdf — in this example
instruction.guide.pdf is the file name, fun-with-maths is slugified
Resource title, and c0ffe is a long random hexadecimal url (note: we should
check if this directory does not exists).

		Access rights: Right now only users that are authors of the resource will have rights to
call this endpoint for a given resource.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

_static/comment-close.png

_static/comment-bright.png

specs/0010-stored-experiments.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

Stored experiments discovery

If experiment hardware is off-line, malfunctioning or just being currently used
we want to allow user to “perform” or rather “watch” pre-recorded experiment.
with only slightly degraded experience.

Blockers

This epic has following blockers:

		Monitoring service — we’d need to have that in place beforehand, if we want to present
user option to perform the “stored” experiment when there is a malfunction we need
to monitor service state.

Possible solutions

Use recorded data

We’ll just “record” data from 10-20 runs of experiment sessions and enable users to “view”
these sessions.

During the “real” experiment runs we would store:

		Partial results (each instance of silf:results stanza)

		Timing information (time between each result)

		Current frame in camera (one for result frame)

Advantages

		Either no work, or minimal work (configuration only) per experiment.

		No new components added to the system.

		We show “real” data (whatever that means...)

Disadvantages

		We will constrain parameters user will be able to choose — that is: we will allow them to
specify only input parameter values that were already pre-recorded

Open problems

		Should we record each session, or rather: should we record sessions of “normal users”?
We do allow to download results of session ONLY if user was taking part in it, if we’d
allow any random user to replay the session and download the results we’d lose that
assumption.

Probable solution: add user-wide setting (and give it to Janek) so each of his session is
stored.

NOTE: Storing results for every experiment performed experiment has it’s appeal though.

		How this interacts with the bot? At the very least we should make sure that bot sessions
are pre-recorded.

		Should we also somehow take into account hour of day — it will affect lightning conditions?

		How to cope with live settings? There are not present on all the experiments, but when we
add light switch — they will be (or just drop the light switch idea, and turn-on light
always).

Use simulated data

Use simulated data or semi-simulated data. In this case we build some semi-heuristic-semi-analytic
model of the results.

In essence this would work similarly to previous solution, but:
for each input parameters model would be able to “generate” series of results, and match
camera footage to it.

Example

Maybe an example: we have a Black Body experiment, there are following settings there:

		Start of the scan (wavelength)

		End of the scan (wavelength)

		Source temperature

		Number of points

We gather scans on maximal width with good resolution for 10-15 temperatures, then
we have enough data to create interpolating model that allows one to estimate
value of voltage for each wavelength for each temperature.

Now when experiment starts we are able to generate data for each combinations for input parameters.

Open problems

		How to provide footage in this method? Probably I could hand-wave some approach but let’s
ignore that!

Solution evaluation

I think we should go for first solution.

Work to do

[image: ../_images/stored-experiments.png]
Architecture

Experiment saving

When to save experiment

I’d say: we should store all experiment runs, rationale is following:

		There is not too much data, it won’t be TB’s of data. If we start feeling that there is too much
data we might just: A) delete pictures B) Stop picture storing.

		It might enable some interesting (publishable!) insights on how users play with this tool.

On the other hand only some experiment runs should be re-playable. I’d say that users with proper
rights should be able to mark series as re-playable using Django Admin Interface.

Note

It might be possible that we’ll need to mark each result as being ‘re-playable’, but
this is out of scope for this story.

If such need arises we’ll need add a new story.

On the other hand we should have a ready endpoint to suppress storing of the experiments. Right now
experiments will be stored always — which might lead to performance decrease if we’ll get hit
by time-intensive trials, to protect against this risk there should be a relatively easy way
to suppress whole functionality.

How does photo storing work

Athena contains a client for the protocol of our camera server, it connects to this server at the
start of the experiment and starts downloading images.

When it receives silf:results stanza it selects image with nearest timestamp.
Then it sends this photo to silf-app for storage, silf-app responds with
opaque handle to that image, this handle is then inserted into silf:results stanza as additional
parameter, patched stanza is stored in the DB.

Note

Most probably each stanza will be a separate row in the database, however this is an
implementation detail, and we might transition to a less normalized shema.

For each silf:results we store exactly a single photo.

I want all our services to be stateless, so photos won’t be stored on the service filesystem.
First storage backend we will evaluate will be Swift/S3.

Open problems

		How to solve problem of timing differences between servers?

		Best solution would be to add timestamps to all messages and match using that. Problem of
de-synchronized system time should be solved by using NTP daemon. This could lead to some errors
in network time, however we will be synchronizing camera server with experiment server, and these
services are very close together (in the same local network) so any NTP discrepancies should be
the same for both of them.

Step by step flow of storing experiment data

		Athena receives silf:session:start, then it sends data package containing following data:
username of the operator, session_id and name of the experiment. If silf-app decides
that it should store this session it returns 201 status, if session can’t be stored it should
return 406 (in this cases athena doesn’t do anything more).

Note

By default silf app will always store the experiment, however I want a quick way to
disable this feature, and patching the method to return 406 status is good enough.

		On each silf:results athena:

		Matches image to the results.

		Sends the image to silf-api receiving opaque handle.

		Inserts the handle to silf:results stanza under some property and saves that to silf-app.

		On silf:session:stop it sends notification to silf-app storing who stopped the session.

[image: ../_images/athena-image-service.png]
Athena saving the images

[image: ../_images/store-experiment.png]
Store experiment flow

[image: ../_images/cant-store.png]
Flow when storage is disabled

Experiment playing

How does photo retrieving work

Images will be stored either in the database or in the Swift/S3 storage, and I’d want to be
able to switch these storage due to whatever reason we deem necessary. This switch should not
require me to change every stored experiment.

Athena will always contact silf-app to get handle for the file.

So the photo retrieving works as follows:

		Photos are identified by opaque handles.

		When silf-app gets a query to download an image it can either: A) send image contents
B) send 302 response — that client should follow. Picture is stored under the redirected
resource.

Step by step flow

		1, When checking the experiment ../api/experiment endpoint Mercury should get information

		whether the experiment is on, if there are some problems it should give information to the
end-user somehow about the fact, and should proceed with re-playing the experiment.

Note

Most probably there should be a GUI to allow user to explicitly enable replay experiment
even if monitoring service says everything is OK.

		All input fields are replaced with combo boxes, Mercury queries silf-app for possible
values in all combo boxes. When user selects each field Mercury queries for new values
(see: Prepare API of silf APP to store experiment results). When there is only a single choice left all blank input
fields are filled.

		Since last response contained a list of series for this set of input parameters Mercury can
start session. There might be more than one series for given set of input parameters — then
Mercury selects replayed series at random (this way we don’t show the same data for each replayed
session).

		Mercury sends stanza in new namespace silf:storedsession:start, this stanza contains input
fields, and selected stored session.

		Stanza: silf:storedsession:start is handled by Athena (we put this in different namespace
only to not have it interpreted by the experiment by mistake!). When athena sees this experiment
it sends silf:storedsession:start response to this message containing:

		List of urls for images (sorted by timestamp) to prefetch for this session.

		Session id.

		Mercury tries to have about 10 images pre-fetched.

Note

When we have many observers this could put some load on our servers.

This is why I want to have images in Swift/S3 service.

		At appropriate intervals Athena sends silf:results containing new results (obviously Athena
should not interpret them).

		After the session finishes Athena sends silf:storedsession:stop (content the same as
silf:stop but different namespace so experiment won’t interpret it).

[image: ../_images/stored-experiment-play.png]
Playing the stored experiment

Breakup into tasks (more discoveries)

Try to figure out how this issue can also fix historical sessions

See Some similarities to :historical namespace, if possible modify this spec accordingly.

Write protocol extensions for this feature

Following things need to be accommodated:

		Adding photos from camera sa links to the results.

		Id’s for the experiment results (silf:results stanza) this might be another UUID.

		Adding timestamp to all messages. Timestamp is in UTC.

		silf:storedsession:start messages

Document set of enhancements to the API provided by silf-app

Read this document and define specific APIs (endpoints, methods, data structures) that silf-api
will follow.

Find out what is the current state of saving the experiment results

Find out what is the current state of experiment results in
silf-app and athena. Fix any issues and make it work.

		Check if we store mode in the results, if not add it.

		Add some tests.

Blocked by: Deployment in locally

Discuss with Janek how ui should look like

		Discuss with Janek how stored experiment UI should look like.

Note

be carefull, nothing fancy - should be as simple as possible

		Create some mockups.

Breakup into tasks (concrete tasks)

Draft required changes to the protocol

Write down required changes to the protocol.

Find out what protocol we use to fetch camera images

Camera server is probably here: backend-bachus-websockets [https://bitbucket.org/silf/backend-bachus-websockets]. reverse engineer that protocol, and
describe it, describe how to install and run Bacchus server, and what are external dependencies
to that.

Optionally:

		Create Ansible deployment scripts so we may deploy that automatically (if you are not comfortable
with it add this as a follow-up task).

		Create a mock server that doesn’t interact with the camera (lets say: sends frames containing
images of numbers from 0 to 1000).

		Describe possible improvements to it.

		Update the protocol to handle sending of image timestamps.

Implement python client for the camera protocol

Implement a python client for the camera protocol, there are following requirements:

		It should store (in memory) a list 10 most recently sent images, with the timestamp
when they were received. Number of stored photos should be configurable.

		It should spawn no processes.

		Possibly it will need to spawn a new thread

		Use some async api to fetch the pictures (why not?) might be fun :)

Prepare API of silf APP to store experiment results

Experiment results store almost what we need, but:

		Intermediate result are stored (need to store every stanza received from the experiment) — right
now only final results are stored.

		Initial settings are not stored in an way that can be indexed — and will be queried.

Fix these issues with data model, and also:

		Store intermediate experiment results as well as time when they were received,
— relative to the experiment start. Stanzas should contain a timestamp so use this timestamp.

		Add boolean switch to series: labeled can_be_replayed (defaults to false).

Add UI to django admin to set this to true.

		Add to silf-api ability to retrieve:

		Stored experiment session by settings.

		All results for session (paginated?)

		Add stored_experiments_enabled which is true iff there are stored session associated with
this experiment.

Add ability to query for input settings

Add ability to query for input settings.

Let’s assume that an experiment has following settings:
freq_start, freq_end, resolution, temperature.
User has selected settings freq_start and resolution. This api would answer following
question what are possible values for freq_end and temperature for which we have stored
data sets for:

		freq_start, freq_end, resolution (and whatever temperature)

		freq_start, resolution, temperature (and any freq_end)

This API will be queried before user fills any settings to get all possible values
for the parameters. After the user fills each setting it will be queried again to find
what values are possible in combination with already filled settings.

Results should be relative to experiment and experiment mode.

Additionally responses will contain a list of series that satisfy current search conditions.

Add storage of photos to silf app

Add API to store images to SILF-APP, photos should be stored along with,
results they are attached to.

Use standard django storage to store the files.

Allow any user to download these images.

Following information should be stored for the image:

		Session id

		FK to experiment

Images should be queried using opaque handle.

Image retrieval

See: How does photo retrieving work

Queries supported

		All images for a series (returns opaque handle)

Integrate Athena with new stuff in the API

At the end of this task Athena should use APIs to store:

		Intermediate experiment results

		Intercept images from camera and store them in silf-app

Implement replaying in the Athena

Implement support for silf:storedsession:start and assorted things.

Update mercury to use silf-app API

Note full spec for changes will be defined in the
protocol extension task.

		If experiment contains has stored_experiments_enabled present user a button to
enable stored mode.

		In this mode each input field is a combo-box from which you can preselect values.

		Live fields are disabled.

Note

I briefly wandered if we can’t create a new websocket server that will serve as “fake” camera
for the Mercury in stored mode, but I decided against:

		Would introduce new set of race conditions — when results de-synchronize with the images.

		One more component to care for

Open problems

Scalability

These do not address problem of scalability — whole communication is still done in the same
room, and “normal” experiments.

For now this is OK, I guess.

Note

Do decide how to handle this use case we should decide whether in “scalability mode” experiment
should behave in the same way as in “normal mode”, i.e. provide ability for many people to
watch the same results, and chat with each other.

If this is required changes will be very big, if we can drop this requirement we can just
implement direct (direct as in not using groupchat) XMPP messages between Mercury and Athena.

Some similarities to :historical namespace

This has some similarities with :historical: stanzas that were designed (but not implemented)
to serve results, for user that joined the experiment when this experiment already was in progress.

It would be good to leverage these similarities to have only single feature of these two
implemented.

Future enhancements

		Use this feature to enable better scalability

		Allow ChatBot to perform stored sessions.

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

_static/comment.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

silf/0010-related-materials.html

 Navigation

 		
 index

 		STEM4youth Documentation 1.0.0 documentation »

		A “Web Camera” repository http://www.webcamlaboratory.com/index.php?page=kin

		

 © Copyright 2016, STEM4youth team.
 Created using Sphinx 1.4.4.

